Silica Membranes for Hydrogen Fuel Production by Membrane Water Gas Shift Reaction and Development of a Mathematical Model for a Membrane Reactor

نویسنده

  • Y. C. van Delft
چکیده

One of the technologies for Pre-Combustion Decarbonisation is the production of hydrogen rich fuel gas from fossil fuel feed stock by means of a water gas shift membrane reactor system. A study to develop and test hydrogen selective membranes for use in a water gas shift membrane reactor operating with sour synthesis gas has been sponsored by the CO2 Capture Project. The aim of the project was to demonstrate a proof of concept water gas shift membrane reactor for this purpose. As one of the potential membrane options in such a membrane reactor tubular micro porous silica membranes have been made for testing with a simulated water gas shift mixture. With standard silica membranes the flux criteria can be met when no water is present in the feed. However, with water in the feed the flux drops to a value, which is a factor 3 below the target. At the start of the project it was clear that the perm selectivity criterion of 100 was too high for micro porous membranes, because a maximum H2/CO2 perm selectivity of 39 was thus far measured for standard silica membranes. Selectivity improvement was focused on higher sintering temperatures, but increase of the H2/CO2 selectivity has not been experimentally proven. It was shown that H2S has no detrimental effect on a standard silica membrane and the H2/H2S selectivity is very high. Under the process conditions, so including a relative high water concentration, the stability of the silica membrane is limited to days as expected. The hydrothermal stability has been improved by incorporating alkyl-groups in the silica structure (ECN patent pending). The modified silica membrane is stable for more than 1000 hours under simulated steam atmosphere testing. A software model of the water gas shift membrane reactor has been developed. The model simulates a counter current water gas shift membrane reactor with micro porous membranes (silica and zeolite) and dense (palladium and proton conducting) membranes and copes with the isothermal and non-isothermal operation of the membrane reactor. The model is implemented as an Aspen Plus User Model (Aspen Plus, version 11.1) and is written in FORTRAN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation the effect of nanocomposite material on permeation flux of polyerthersulfone membrane using a mathematical approach

Integrally skinned asymmetric membranes based on nanocompositepolyethersulfone were prepared by the phase separation process using the supercritical CO2 as a nonsolvent for the polymer solution. In present study, the effects of temperature and nanoparticle on selectivity performance and permeability of gases has beeninvestigated. It is shown that the presence of silica nanoparticles not only di...

متن کامل

Development of Palladium-Alloy Membranes for Hydrogen Separation and Purification

This paper summarizes R&D activities and progress at NORAM Engineering and the University of British Columbia (UBC) on preparation and testing of thin palladium-based membranes and their applications. Most of these activities were carried out internally at NORAM, some jointly with UBC and their spin-off company, Membrane Reactor Technology (MRT) through a wide range of projects. Key results out...

متن کامل

Enhancement of Hydrogen and Methanol Production using a Double Fluidized-bed Two Membranes Reactor

Nowadays, hydrogen and methanol are attractive prospects because of lower emission compared to the other energy sources and their special application in fuel cell technology, which are now widely regarded as key energy solution for the 21st century. These two chemicals also can be utilized in transportation, distributed heat and power generation and energy storage systems. In this study, a nove...

متن کامل

Advances on High Temperature Pd-Based Membranes and Membrane Reactors for Hydrogen Purifcation and Production

Membrane technology applied in the chemical and energy industry has the potential to overcome many drawbacks of conventional technologies such as the need of large volume plants and large CO2 emissions. Recently, it has been reported that this technology might become more competitive...

متن کامل

Dynamic Model For Production of Biohydrogen Via Water- Gas Shift Reaction (RESEARCH NOTE)

In design of anaerobic bioreactor, rate equation is commonly used. Mathematical model was developed at steady state condition, to project concentration of gaseous substrate and product in biological oxidation of carbon monoxide with water to produce hydrogen and carbon dioxide. The concept of bioconversion was based on transport of CO from gas phase to liquid phase, as the CO consumption was in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005